Pieri Algebras for the Orthogonal and Symplectic Groups
نویسندگان
چکیده
We study the structure of a family of algebras which encodes a generalization of the Pieri Rule for the complex orthogonal group. In particular, we show that each of these algebras has a standard monomial basis and has a flat deformation to a Hibi algebra. There is also a parallel theory for the complex symplectic group.
منابع مشابه
Pieri Rules for Classical Groups and Equinumeration between Generalized Oscillating Tableaux and Semistandard Tableaux
We present several equinumerous results between generalized oscillating tableaux and semistandard tableaux and give a representation-theoretic proof to them. As one of the key ingredients of the proof, we provide Pieri rules for the symplectic and orthogonal groups.
متن کاملPieri-type Formulas for Maximal Isotropic Grassmannians via Triple Intersections
We give an elementary proof of the Pieri-type formula in the cohomology of a Grassmannian of maximal isotropic subspaces of an odd orthogonal or symplectic vector space. This proof proceeds by explicitly computing a triple intersection of Schubert varieties. The decisive step is an exact description of the intersection of two Schubert varieties, from which the multiplicities (which are powers o...
متن کاملAffine Stanley symmetric functions for classical types
We introduce affine Stanley symmetric functions for the special orthogonal groups, a class of symmetric functions that model the cohomology of the affine Grassmannian, continuing the work of Lam and Lam, Schilling, and Shimozono on the special linear and symplectic groups, respectively. For the odd orthogonal groups, a Hopf-algebra isomorphism is given, identifying (co)homology Schubert classes...
متن کامل2 00 9 Pieri resolutions for classical groups
We generalize the constructions of Eisenbud, Fløystad, and Weyman for equivariant minimal free resolutions over the general linear group, and we construct equivariant resolutions over the orthogonal and symplectic groups. We also conjecture and provide some partial results for the existence of an equivariant analogue of Boij–Söderberg decompositions for Betti tables, which were proven to exist ...
متن کاملEssential Dimension of Projective Orthogonal and Symplectic Groups of Small Degree
In this paper, we study the essential dimension of classes of central simple algebras with involutions of index less or equal to 4. Using structural theorems for simple algebras with involutions, we obtain the essential dimension of projective and symplectic groups of small degree.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009